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1. Introduction

Our purpose is to study quantum scalar fields living on the background of a special class

of solutions of (1+1)-dimensional dilaton gravity. This class of 2D spacetimes includes

a variety of dilaton black holes (BH) such as CGHS solution [1] as well as the de Sitter

spacetime. In this paper non-minimality is understood as a presence in the Lagrangian of

an interaction term with the scalar curvature rather than with the dilaton. We demonstrate

that, although the geometry of black holes is quite different from that of the de Sitter space,

the dynamics of quantum non-minimal massless scalar fields does not depend really on this

difference. At first sight it looks surprising, since the de Sitter geometry seems to be much

more symmetrical than, e.g., the CGHS model, but it happens that for non-minimal fields

they look alike. This property provides a tool to translate many quantum effects, which

were calculated for the de Sitter space, to the 2D black hole background and vice versa.

Quantum fields on the de Sitter background have been studied in the literature in great

detail and the Green functions for scalar fields in the de Sitter space are well known. The

only, though very important, difference from the case of dilaton black holes is the choice of

boundary conditions for quantum states of the fields. In the presence of interacting fields

the de Sitter space (for even dimensions) appears to be intrinsically unstable [2]. Technically

this is a consequence of an infrared asymptotic of the Feynmann propagators corresponding

to various vacua. But, as we prove in the next section, the propagators on the de Sitter

space are identical to those on the considered class of dilaton black holes, which strongly

suggests their intrinsic instability too. Another interesting property resulting from the

discussed symmetry is that quasi-normal modes for non-minimal fields on the background

of 2D dilaton black holes in question eq. (2.1) are identical to quasi-normal modes on the

de Sitter space.
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2. Dilaton models

Let us consider spacetimes described by the metric

ds2 = −4
dUdV

(1 − UV )a
=

ex∗

(ex∗ + 1)a

[

−dt2 + dx∗2
]

. (2.1)

where U, V are the Kruskal coordinates, x∗ is the tortoise coordinate and t is the time.

U = e
t+x

∗

2 , V = −e−
t−x

∗

2 , x∗ = ln (−UV ).

For simplicity, we omit all dimensional prefactors in the metric, so that the coordinates are

dimensionless. Dimensional quantities can be easily restored later by introducing a proper

scale of the metric.

These spacetimes (2.1) naturally appear as generic static solutions of a wide class of

dilaton gravity models described by the action

S =
1

16π

∫

d2x
√−ge−2φ

[

R + 4a(∇φ)2 + Be2(1−a)φ
]

(2.2)

and parametrized by a dimensionless parameter a. Most of the physically interesting

spacetimes appear to belong to the interval 0 ≤ a ≤ 2. The dimensional parameter

B plays a role similar to the cosmological constant and can be fixed by an appropriate

rescaling of the metric. These dilaton gravity models have been studied in detail by Fabbri

and Russo [3]. An excellent analysis of the problem of geodesic completeness of these

spacetimes and their generalizations can be found in the paper by Katanaev, Kummer,

and Liebl [4].

Let us present a couple of other sets of static coordinates, which may be more conve-

nient for different applications

ds2 = −z(1 − z)a−1dt2 +
(1 − z)a−3

z
dz2 =

(

1 + r

2

)a−2 [

−4(1 − r2) dt2 +
dr2

1 − r2

]

,(2.3)

z = − UV

1 − UV
, x∗ = ln

z

1 − z
, r = 1 − 2z.

For these metrics with an arbitrary parameter a the horizon is located at z = 0. Surface

gravity κ on the horizon is

κ =

√

∣

∣

∣
ξµξµwνwν

∣

∣

∣

z=0
=

1

2
, ξµ = δµ

t , wα =
1

2
∇α ln |ξµξµ| .

One would expect that quantum fields on this background reveal effective thermal prop-

erties with the corresponding Hawking temperature to be related with the horizon surface

gravity

TBH =
κ

2π
=

1

4π
.

Carter-Penrose diagrams of these spacetimes are basically of two different types [4]

depending on the value of the parameter a. If 1 < a ≤ 2 the global structure is similar
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Figure 1: Carter-Penrose diagrams for the de Sitter spacetime and geometries eq. (2.1) with

1 < a ≤ 2

Figure 2: Carter-Penrose diagrams for the dilaton black holes with 0 < a ≤ 1.

to the de Sitter geometry (see figure 1) while for 0 < a ≤ 1 it is of the dilaton black hole

type (see figure 2). When the parameter a = 2 the metric eq. (2.1) describes the de Sitter

spacetime.

ds2 = −z(1 − z)dt2 +
dz2

z(1 − z)
= −(1 − r2)dT 2 +

dr2

1 − r2
, T =

t

2
.

If the parameter a = 1 then the action (2.2) corresponds to the CGHS model [1]. A static

solution describing the CGHS dilaton black hole is

ds2 = −zdt2 +
dz2

z(1 − z)2
.

with the horizon located at z = 0 and spatial infinity at z = 1.

3. Euclidean dilaton black hole

Let us start with the Euclidean version of the BH. It is obtained from the metric (2.3)

using the Wick rotation of the Killing time t = iτ , the Euclidean time being periodic with
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the period β = 1/TBH = 4π.

ds2 = z(1 − z)a−1dτ2 +
(1 − z)a−3

z
dz2, 0 ≤ τ ≤ 4π, 0 ≤ z ≤ 1. (3.1)

In the Euclidean case it is useful to rewrite the metric in another coordinate system (θ, ϕ)

cos(θ) = 1 − 2z, ϕ =
1

2
τ.

in which it is explicitly conformal to a sphere S2.

ds2 =

(

1 + cos (θ)

2

)a−2
[

dθ2 + sin(θ)2 dϕ2
]

, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. (3.2)

The corresponding scalar curvature for this geometry is

R = a

(

1 + cos θ

2

)2−a

,
√

gR = a sin θ .

At the point θ = π we have to be more accurate. If 1 < a < 2 and the point θ = π is not

excluded from the manifold then there is a conical singularity at this point (see, e.g., the

a = 3/2 case right picture in figure 3) and one has to add δ-like singular curvature term1

R =

(

1 + cos θ

2

)2−a [

a + (2 − a)δ

(

1 + cos θ

2

)]

.

For compact manifolds the inclusion of conical singularity term guarantees the correct value

of the topological invariant
∫

d2x
√

gR = 8π. Embeddings of these manifolds to a 3D flat

space are depicted in figure (3). When a = 2 the conical singularity disappears and we

have the metric of a unit sphere, describing, obviously, an analytic continuation of the de

Sitter space. If 0 < a ≤ 1 then the Euclidean manifolds have the topology of a disk (see

figure 4) and conical singularities do not appear.

4. Euclidean vacuum

Now let us consider quantum fields, φ, which are non-minimally coupled to the scalar

curvature on this background. The equation for free fields in 2D can always be written in

the form

(� − ξR)φ = 0 .

The Euclidean Green function is the solution of the equation

(� − ξR)GE(θ, ϕ; θ′, ϕ′) = −δ(θ − θ′)δ(ϕ − ϕ′)√
g

. (4.1)

1For the Minkowskian signature δ-like term does not appear and, therefore, it is of no consequence for

our consideration of Feynmann propagators.
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Figure 3: Embeddings of the Euclidean a = 2 (on the left) and a = 3/2 (on the right) geometries

to a flat 3D space.

Figure 4: Embeddings of the Euclidean CGHS black hole (on the left, a = 1) and a dilaton black

hole with a = 1/2 (on the right) to a flat 3D space.

When quantum fields are assumed to be regular at “south pole” (θ = π) it’s explicit form

reads
[

∂θ (sin θ ∂θ) +
1

sin θ
∂2

ϕ − aξ sin θ

]

GE(θ, ϕ; θ′, ϕ′) = −δ(θ − θ′)δ(ϕ − ϕ′). (4.2)

A remarkable property of this Green function is that the parameter a enters the equation

only in the combination aξ. If we put aξ = 2ξ̃ + m2 then this equation is identical to that

of a massive non-conformal scalar field on the 2D sphere
(

� − ξ̃R − m2
)

GE(θ, ϕ; θ′, ϕ′)
∣

∣

∣

M=S2
= −δ(θ − θ′)δ(ϕ − ϕ′)√

g
.

It means that in spite of the quite different geometries of the spacetimes in question non-

minimal quantum fields do not distinguish between them after the rescaling of the constant

aξ.

The Green function for the non-minimal scalar field in the background of the Euclidean

CGHS black hole (a = 1) has been found in [5] (see eqs.(5.30)-(5.31)). In order to make

more transparent the comparison of our results with the de Sitter case [2] and other dilaton

black holes we define aξ = −ν(ν + 1) or

ν = −1

2
+

√

1

4
− a ξ. (4.3)
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Then, for arbitrary a > 0 in the metric (2.3) the Euclidean Green function can be written

in terms of the Legendre function exactly as for CGHS black hole case (see [5])

GE(X,X ′) = − 1

4 sin(πν)
Pν(−λ), (4.4)

where

λ = (1 − 2z)(1 − 2z′) + 4
√

zz′(1 − z)(1 − z′) cos

(

τ − τ ′

2

)

= cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′). (4.5)

The dependence on the geometry described by the constant a comes only via the parameter

ν. GE(X,X ′) is regular at “antipodal” points (λ = −1) and has a proper logarithmic

divergence at coincident points (λ → 1). Strictly speaking λ = −1 means that points are

antipodal only in the 2D sphere case. But the coordinate dependence of Green functions

for all other spaces is also encoded in the universal function λ(X,X ′) which in general is

no longer a trivial function of the geodesic distance between points.

The mode expansion of the Green function can be written in the form

GE(X,X ′) = − 1

4 sin(πν)

[

Pν(−1 + 2z<) Pν(1 − 2z>)

+2

∞
∑

n=1

(−1)n cos

(

n(τ − τ ′)

2

)

P n
ν (−1 + 2z<) P−n

ν (1 − 2z>)

]

. (4.6)

After an analytical continuation to the Minkowskian signature this Green function gives

the Feynmann propagator for quantum fields in the Euclidean vacuum state. The de Sitter

Green function corresponds to a = 2 and CGHS black hole case to a = 1. Of course in the

Minkowskian signature one can consider a set of different vacuum states and the Feynmann

propagator depends on their choice. The Euclidean vacuum is only one of the possibilities.

Moreover, if one wants to take into account interactions, there are additional constraints

on a possible choice of the vacuum state. In order to get a meaningful perturbation theory

the Feynmann propagator should satisfy the composition principle [2].

5. Composition principle

The variations of both the Euclidean Green function GE and the Feynmann propagator

should satisfy the following rule

δG = GδF̂G,

where

F̂G = −1̂, ⇔ √
gF̂G(x, x′) = −δ(x − x′).

So, if we consider the following variation of the operator δF̂ = −Rδξ, then the Green

functions must fulfill the identity

∂ξG(x, y) = −
∫

dx′
√

g(x′) G(x, x′)R(x′)G(x′, y) . (5.1)
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In the case of a 2D unit sphere, which corresponds to a = 2 and the scalar curvature R = 2,

this variational rule is equivalent to the composition principle

1

2
∂

ξ̃
G(x, y) = ∂m2G(x, y) = −

∫

dx′
√

g(x′) G(x, x′)G(x′, y) (5.2)

proposed by Polyakov as a property of Green functions necessary for the quantum state to

be “eternal” [2]. The composition principle lies at the foundation of quantum field theory

and its violation would be unacceptable for any quantum field theory which takes into

account interactions.

In the case of a 2D Euclidean dilatonic black hole the Ricci scalar is not constant, but

ξR
√

g|EBH ↔ (2ξ̃ + m2)
√

g|S2 . Therefore, taking into account the coincidence of equations

for Green functions in both spaces we see that the “eternity” condition (5.2) formally

coincides with eq. (5.1). For the Euclidean Green functions eq. (4.4) this property eq. (5.1)

naturally follows from the property of the Legendre functions.

The Feynmann propagator can be obtained formally by analytic continuation from the

Euclidean Green function.

GE(X,X ′) = − 1

4 sin(πν)
Pν(−λ − i0) . (5.3)

This propagator corresponds to a particular choice of the vacuum state. In the case of the

de Sitter spacetime it is known as the Bunch-Davies or Hartle-Hawking vacuum. Sometimes

this state is also called the Euclidean vacuum. This is why we have kept here the subscript

E though it is defined for spacetimes with the Minkowskian signature.

Let us consider an example of 2D de Sitter spacetime. In global coordinates it has the

form

ds2 = −dτ2 + cosh2 τdϕ̃2, −∞ < τ < ∞, 0 ≤ ϕ̃ ≤ 2π,

and the de Sitter invariant quantity

λ = cosh τ cosh τ ′ cos(ϕ̃ − ϕ̃′) − sinh τ sinh τ ′,

is greater than 1 for timelike separations and less then 1 for spacelike separations. As a

result of the different range of integration in the eq. (5.2) the composition rule is violated for

the Euclidean vacuum [2] since the Legendre function Pν(−λ) blows up in the asymptotic

λ → ∞ and the integral over the spacetime diverges. The Euclidean vacuum is not the

only de Sitter invariant vacuum. The Green functions for other de Sitter invariant vacuum

states can be written as a linear combination of Pν(λ+i0) and Qν(λ+i0). Here i0 is added

to the argument of the Legendre functions in order to define the propagator on the cut

[−∞, 1] in the complex plane of λ. Polyakov proposed [2] that the Feynmann propagator

which satisfies the composition principle for the de Sitter space is given by the formula

GQ(X,X ′) =
1

2π
Qν(λ + i0). (5.4)

– 7 –
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It corresponds to a different vacuum state and differs from the Euclidean vacuum propa-

gator. The difference can be written explicitly

GQ(X,X ′) = GE(X,X ′) +
e−iπν

4 sin(πν)
Pν(λ + i0) (5.5)

The Green function eq. (5.4) decreases at λ → ∞ and the integral in eq. (5.2) converges

provided ℜ(ν) > −1/2. GQ has a proper divergence at coincident points and there is also an

extra divergence for antipodal points. Evidently, the corresponding quantum state belongs

to the class of α−vacua [6 – 11]. In the de Sitter spacetime GQ is the only Feynmann

propagator which respects the composition rule. Nevertheless, even this vacuum state is

not stable and decays. This instability can be proven [2] using analytic properties of Qν(λ).

Though the generic spacetimes eq. (2.1) do not respect the de Sitter symmetry, the

Green functions still have the form eq. (5.4) of the Feynmann propagators in the de Sitter

spacetime. Therefore, the above discussion of their properties is applicable to all these

spacetimes and one can conclude that Q-vacuum for dilaton black holes decays as well.

6. Bound states, quasinormal modes and spacetime instability

In static coordinates (t, r) (see eq. (2.3)) Fourier modes φω with fixed frequency ω satisfy

the equation

[

∂r(1 − r2)∂r +
4ω2

1 − r2
− aξ

]

φω = 0 . (6.1)

The independent solutions of this equation are P 2iω
ν (r) and Q2iω

ν (r). The Euclidean prop-

agator GE is the sum of terms

e−iω(t−t′)P 2iω
ν (r) P−2iω

ν (−r′)

with a prefactors proportional to the thermal occupation number n(ω) = 1
e4πω−1

corre-

sponding to the inverse temperature β = 2π/κ = 4π. The GQ propagator is a similar sum

of terms

e−iω(t−t′)P 2iω
ν (r) Q−2iω

ν (r′) .

Let us study an evolution of the modes with various boundary conditions. Any mode

with a frequency ω is given by a linear combination of the Legendre functions P 2iω
ν (r) and

Q2iω
ν (r) or they can be equally well expressed in terms of hypergeometric functions (see,

e.g., [5]). The frequency in these formulas can be taken as any complex number depending

on the boundary conditions imposed on the modes. The solutions with real frequencies

describe wavelike excitations. Complex frequencies are related to quasinormal modes while

modes with pure imaginary frequencies appear to describe bound states. In the paper [5]

it has been shown that for a CGHS black hole bound states appear when ξ is negative.

In this case perturbations grow exponentially with time and lead to a severe ”tachyonic”

instability of the black hole. It’s quite interesting that the unstable modes appear in the

– 8 –
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region outside the horizon, where the potential barrier has a minimum. Bound modes

create fluxes of energy from this region to infinity and to the horizon and, because of the

back reaction, eventually strongly deform the background geometry.

In our case the modes are determined by the same formula (4.7) from the paper [5],

but aξ being substituted for ξ.

ωn =
i

2
(ν − n) =

i

2

(

√

1

4
− aξ − 1

2
− n

)

. (6.2)

When aξ is negative and decreases further the number of bound states increases. A new

bound state appears every time when ν =
√

1
4 − aξ − 1

2 reaches a new integer number

value. This automatically leads to the conclusion that quantum fields with negative aξ

cause ”tachyonic” instability for all spacetimes described by the metrics eq. (2.1) including

the dilaton black holes and the de Sitter space.

The modes which are ingoing at the horizon ∼ e−iω(t+x∗) and outgoing at infinity

∼ e−iω(t−x∗) are called quasinormal modes (QNM). The parameters of QNMs can be easily

determined from the position of poles in the complex ω-plane of a transmission coefficient

(see, e.g., eq. (3.30) in [5])

|Tω|2 =
cosh(4πω) − 1

cosh(4πω) + cos
(

2π
√

1
4 − aξ

) (6.3)

through the potential barrier. When the frequency is pure imaginary with positive imag-

inary part they describe bound states eq. (6.2). The unstable behavior of 2D black holes

against scalar perturbations discussed in [12] is directly related with the instability because

of the bound states [5].

For other values of aξ the frequencies eq. (6.2) may have both imaginary and real

parts. If aξ > 1
4 , then the quasinormal modes ωn are

ωn =
1

2

√

aξ − 1

4
− i

1 + 2n

4
. (6.4)

Here we see that the real part ℜ(ωn) = 1
2

√

aξ − 1
4 of the quasinormal modes does not

depend on n in accord with the high damping limit conjecture [13, 14] for QNMs. In pure

de Sitter spacetime (a = 2, 2ξ = m2) quasinormal modes eq. (6.2) correspond to those of

2D case in [15, 16].

7. Discussion

2D dilaton gravity models appear as effective gravity theories after a dimensional reduction

from higher dimensions, in string theory, and in many other applications. The advantage

of studying quantum fields in 2D spacetimes is that it is much easier to find exact solutions

in this case, while reproducing qualitatively the same physical effects such as the Hawking

radiation, thermodynamics, etc. . . Well known examples are CGHS model [1] and the de

Sitter spacetime. In this paper we have found that these two models are related. Moreover
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they, in fact, have many more relatives. As for the non-conformal quantum fields on these

backgrounds, they are exactly solvable for all members of this family and their physical

properties are basically the same. The difference is encoded only in one real parameter a

eq. (2.1), which marks the representative of the family.

For example, exact quasinormal modes are described by the common formulae

eqs. (6.2), (6.4). It is surprising because the geometries of these spacetimes are quite

different. From this result one can see that there is no real part for quasinormal modes as

soon as ξ ≤ 1
4a

. When ξ ≥ 1
4a

a real part appears and it is the same for all n. The real

part 1
2

√

aξ − 1
4 can be any real number, while the Hawking temperature is the same for all

these spacetimes. This observation can be considered as a counterexample to the conjec-

ture, that the real part of highly damped QNMs is to be proportional to the logarithm of

an integer number. This conjecture has been widely discussed in the literature in relation

with the black holes quantization (see, e.g., review of the problem and references on the

subject in the paper by R.G. Daghigh and G. Kunstatter [13]).

If scalar fields have negative coupling ξ then bound modes arise outside the horizon of

CGHS black hole [5]. This lead to classical instability of the system similar to tachyonic

one. The observed equivalence of CGHS black hole, de Sitter spacetime and other dilaton

models leads to the conclusion that as soon as aξ < 0 bound modes appear for all these

metrics along with the same destructive instabilities. For the positive non-minimal coupling

quantum instabilities appear to arise similar to instabilities discussed by Polyakov [2] in

application to the de Sitter. Their interpretation in the black hole case requires more

detailed analysis and would be very interesting to examine.
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